Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.

Identifieur interne : 000846 ( Main/Exploration ); précédent : 000845; suivant : 000847

Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.

Auteurs : RBID : pubmed:23925640

English descriptors

Abstract

A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation.

DOI: 10.1039/c3lc50351h
PubMed: 23925640

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.</title>
<author>
<name sortKey="Yang, Shih Mo" uniqKey="Yang S">Shih-Mo Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong.</nlm:affiliation>
<country xml:lang="fr">Hong Kong</country>
<wicri:regionArea>Department of Mechanical and Automation Engineering, Chinese University of Hong Kong</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Sheng Yang" uniqKey="Tseng S">Sheng-Yang Tseng</name>
</author>
<author>
<name sortKey="Chen, Hung Po" uniqKey="Chen H">Hung-Po Chen</name>
</author>
<author>
<name sortKey="Hsu, Long" uniqKey="Hsu L">Long Hsu</name>
</author>
<author>
<name sortKey="Liu, Cheng Hsien" uniqKey="Liu C">Cheng-Hsien Liu</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1039/c3lc50351h</idno>
<idno type="RBID">pubmed:23925640</idno>
<idno type="pmid">23925640</idno>
<idno type="wicri:Area/Main/Corpus">000476</idno>
<idno type="wicri:Area/Main/Curation">000476</idno>
<idno type="wicri:Area/Main/Exploration">000846</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Separation (instrumentation)</term>
<term>Electric Impedance</term>
<term>Electrical Equipment and Supplies</term>
<term>Electrophoresis (methods)</term>
<term>Glass (chemistry)</term>
<term>Hep G2 Cells</term>
<term>Humans</term>
<term>Lasers</term>
<term>Microspheres</term>
<term>Optical Processes</term>
<term>Organic Chemicals (chemistry)</term>
<term>Polystyrenes (chemistry)</term>
<term>Tin Compounds (chemistry)</term>
<term>Tissue Array Analysis (instrumentation)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Organic Chemicals</term>
<term>Polystyrenes</term>
<term>Tin Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Glass</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Cell Separation</term>
<term>Tissue Array Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrophoresis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Impedance</term>
<term>Electrical Equipment and Supplies</term>
<term>Hep G2 Cells</term>
<term>Humans</term>
<term>Lasers</term>
<term>Microspheres</term>
<term>Optical Processes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23925640</PMID>
<DateCreated>
<Year>2013</Year>
<Month>08</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1473-0189</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>7</Day>
</PubDate>
</JournalIssue>
<Title>Lab on a chip</Title>
<ISOAbbreviation>Lab Chip</ISOAbbreviation>
</Journal>
<ArticleTitle>Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.</ArticleTitle>
<Pagination>
<MedlinePgn>3893-902</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c3lc50351h</ELocationID>
<Abstract>
<AbstractText>A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Shih-Mo</ForeName>
<Initials>SM</Initials>
<Affiliation>Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Tseng</LastName>
<ForeName>Sheng-Yang</ForeName>
<Initials>SY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hung-Po</ForeName>
<Initials>HP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Long</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Cheng-Hsien</ForeName>
<Initials>CH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Lab Chip</MedlineTA>
<NlmUniqueID>101128948</NlmUniqueID>
<ISSNLinking>1473-0189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Organic Chemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Polystyrenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tin Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>71243-84-0</RegistryNumber>
<NameOfSubstance>indium tin oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Cell Separation</DescriptorName>
<QualifierName MajorTopicYN="Y">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electric Impedance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Electrical Equipment and Supplies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electrophoresis</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Glass</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Hep G2 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Lasers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Microspheres</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Optical Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Organic Chemicals</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Polystyrenes</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin Compounds</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tissue Array Analysis</DescriptorName>
<QualifierName MajorTopicYN="Y">instrumentation</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1039/c3lc50351h</ArticleId>
<ArticleId IdType="pubmed">23925640</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000846 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000846 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23925640
   |texte=   Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23925640" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024